T-cell protein tyrosine phosphatase deletion results in progressive systemic inflammatory disease.

نویسندگان

  • Krista M Heinonen
  • Frederick P Nestel
  • Evan W Newell
  • Gabrielle Charette
  • Thomas A Seemayer
  • Michel L Tremblay
  • Wayne S Lapp
چکیده

The deregulation of the immune response is a critical component in inflammatory disease. Recent in vitro data show that T-cell protein tyrosine phosphatase (TC-PTP) is a negative regulator of cytokine signaling. Furthermore, tc-ptp(-/-) mice display immune defects and die within 5 weeks of birth. We report here that tc-ptp(-/-) mice develop progressive systemic inflammatory disease as shown by chronic myocarditis, gastritis, nephritis, and sialadenitis as well as elevated serum interferon-gamma. The widespread mononuclear cellular infiltrates correlate with exaggerated interferon-gamma, tumor necrosis factor-alpha, interleukin-12, and nitric oxide production in vivo. Macrophages grown from tc-ptp(-/-) mice are inherently hypersensitive to lipopolysaccharide, which can also be detected in vivo as an increased susceptibility to endotoxic shock. These results identify T-cell protein tyrosine phosphatase as a key modulator of inflammatory signals and macrophage function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SHP1 phosphatase-dependent T cell inhibition by CEACAM1 adhesion molecule isoforms.

T cell activation through the T cell receptor (TCR) is subsequently modified by secondary signals that are either stimulatory or inhibitory. We show that CEACAM1 adhesion molecule isoforms containing a long cytoplasmic domain inhibited multiple T cell functions as a consequence of TCR ligation. Overexpression of CEACAM1 resulted in decreased proliferation, allogeneic reactivity, and cytokine pr...

متن کامل

Mutation analysis of the tyrosine phosphatase PTPN2 in Hodgkin's lymphoma and T-cell non-Hodgkin's lymphoma.

We recently reported deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Functional analyses confirmed that PTPN2 acts as classical tumor suppressor repressing the proliferation of T cells, in part through inhibition of JAK/STAT signaling. We investigated the expression of PTPN2 in leukemia as well as lymphoma cell lines. We identified bi-allelic inac...

متن کامل

Increased Susceptibility to Dextran Sulfate Sodium Induced Colitis in the T Cell Protein Tyrosine Phosphatase Heterozygous Mouse

T cell protein tyrosine phosphatase (TC-PTP/PTPN2) is an enzyme that is essential for the proper functioning of the immune system and that participates in the control of cell proliferation, and inflammation. We previously observed that TC-PTP(-/-) mice display various immunodeficiencies, hypersensitivity to LPS and die within three weeks of birth due to anemia and widespread inflammation. A rec...

متن کامل

Expression of the tyrosine phosphatase SRC homology 2 domain-containing protein tyrosine phosphatase 1 determines T cell activation threshold and severity of experimental autoimmune encephalomyelitis.

Experimental autoimmune encephalomyelitis (EAE) is a CD4 Th1-mediated inflammatory demyelinating disorder of the CNS and a well-established animal model for multiple sclerosis. Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a cytosolic tyrosine phosphatase that is involved in regulating the T cell activation cascade from signals initiated through the TCR. To study th...

متن کامل

Loss of SHP-2 activity in CD4+ T cells promotes melanoma progression and metastasis

The Src homology 2 domain-containing tyrosine phosphatase 2 (SHP-2) has been reported to have both tumor-promoting and tumor-suppressing roles in tumorigenesis. However, the role of SHP-2 in tumor immunity remains unclear. Here we observed progressively lower levels of phosphorylated SHP-2 in tumor-associated CD4(+) T cells during melanoma development in a murine model. Similarly, the levels of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 103 9  شماره 

صفحات  -

تاریخ انتشار 2004